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Abstract
Selection for bulls that would reach puberty early reduces the generation interval 
and increases fertility and herd productivity. Despite its economic importance, 
there are few QTL associated with age at puberty described in the literature. In 
this study, a weighted single‐step genome‐wide association study was performed 
to detect genomic regions and putative candidate genes related to age at puberty in 
young Nelore bulls. Several protein‐coding genes related to spermatogenesis func-
tions were identified within the genomic regions that explain more than 0.5% of 
the additive genetic variance for age at puberty in Nelore bulls, such as ADAM11, 
BRCA1, CSNK2A, CREBBP, MEIOC, NDRG2, NECTIN3, PARP2, PARP9, PRSS21, 
RAD51C, RNASE4, SLX4, SPA17, TEX14, TIMP2 and TRIP13 gene. Enrichment 
analysis by DAVID also revealed several GO terms related to spermatogenesis such 
as DNA replication (GO:0006260), male meiosis I (GO:0007141), double‐strand 
break repair (GO:0006302), base excision repair (GO:0006284), apoptotic process 
(GO:0006915), cell–cell adhesion (GO: 0098609) and focal adhesion (GO:0005925). 
The heritability for age at puberty shows that this trait can be improved based on tra-
ditional EBV selection. Adding genomic information to the system helps to elucidate 
genes and molecular mechanisms controlling the sexual precocity and could help to 
predict sexual precocity in Nelore bulls with greater accuracy at younger age, which 
would speed up the breeding programme for this breed.
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1 |  INTRODUCTION

Age at puberty is important for cattle performance because 
it determines the beginning of animal's reproductive life. 
Selection for fertile bulls that would reach puberty early 
reduces the generation interval and potentially increases 
fertility and herd productivity (Fortes et al., 2012; Siddiqui 
et al., 2008). Although heifer pregnancy is a direct indica-
tor of age at puberty in bulls, scrotal circumference is the 
most recorded reproductive trait in breeding programmes 
for beef cattle and is widely used as a main indicator of 
precocity and fertility. Puberty in bulls has been defined by 
scrotal circumference thresholds which are inexpensive and 
easy to measure, are highly heritable and have been cor-
related to sperm concentration, motility and morphology 
(Corbet et al., 2011; Siddiqui et al., 2008), age at puberty 
in bulls and their female relatives (Kluska et al., 2018), and 
heifer pregnancy (Terakado et al., 2015). Puberty in young 
bulls could also be characterized by the production of the 
first ejaculate with at least 50 × 106 sperm with 10% pro-
gressive motility (Wolf et al., 1965).

Significant phenotypic differences have been reported 
for age at puberty among cattle breeds, where Zebu (Bos 
indicus) cattle breeds, such as Nelore, have slower testicu-
lar development and tend to reach puberty later than taurine 
(Bos taurus) breeds (Casas, Lunstra, Cundiff, & Ford, 2007; 
Chase et al., 2001; Lunstra & Cundiff, 2003). Ramírez López 
et al. (2015), in a study to determine the stage of sexual ma-
turity in Nelore bulls, identified that 84.5% of the bulls that 
were 19–23 months old were sexually mature. Freneau, Vale 
Filho, Marques, and Maria (2006) identified that some young 
Nelore bulls were mature when they were around 15 months 
old.

Despite its economic importance, there are few QTL asso-
ciated with age at puberty described in the literature. Fortes 
et al. (2012), performing a genome‐wide association study 
(GWAS), detected the CA8, CHD7, CSF2RA, FAM110B, 
IMPAD1, NSMAF, PCMTD1, PENK, RLBP1, RP1, SDR16C, 
SNTG1, TOX and XKR4 genes on BTA14 playing significant 
roles on age at puberty in Brahman cattle. The IGF‐1 (Lirón 
et al., 2012), MIR551B, MECOM (Fernández et al., 2015), 
ISL1, PELO, FST and SPZ1 genes (Fernández et al., 2015) 
have been associated with timing of puberty in Angus bulls. 
Polymorphisms in thyroglobulin (TG) and follicle‐stimulat-
ing hormone receptor (FSHR) genes have been associated 
with age at puberty in Guzerat (Fernández et al., 2017) and 
Nelore (Milazzotto et al., 2008) bulls, respectively.

In this work, we performed a genome‐wide association 
study to detect genomic regions and putative candidate genes 
related to age at puberty in Nelore bulls. The elucidation of 
genes and molecular mechanisms controlling this trait should 
provide a better understanding of the genetic regulation of re-
productive performance and could promote earlier prediction 

of puberty in young bulls that would speed up genetic breed-
ing programmes.

2 |  MATERIALS AND METHODS

2.1 | Phenotype and pedigree information
Animal Care and Use Committee approval was not obtained 
for this study because the genotypic data were from an ex-
isting database provided by ANCP (National Association 
of Breeders and Researchers), Ribeirão Preto, São Paulo, 
Brazil. We did not collect any new samples for this study. 
The phenotypic data were collected by Animal Reproduction 
Laboratory, Faculty of Veterinary Medicine and Animal 
Science, Federal University of Mato Grosso do Sul, Campo 
Grande, MS, Brazil. The methodology of animal manage-
ment and biological material collection was approved by 
the Animal Ethics and experimentation Committee of the 
Federal University of Mato Grosso do Sul, under protocol 
no 511/2013.

The phenotypic and pedigree information were collected 
by ANCP breeding programme from 18 Nelore herds located 
in midwest and southeast regions of Brazil. The animals 
were pasture‐reared in low‐throughput production systems. 
Pedigree information was available on 202,717 animals.

The age at puberty was assessed in 4,235 young Nelore 
bulls by andrological clinical evaluation and semen collec-
tion through electroejaculation in young bulls with scrotal 
circumference higher than 19 cm. Based on the progressive 
motility ≥10% and a total spermatic concentration ≥50 × 106 
spermatozoa in the ejaculate, animals were classified as pu-
bertal or non‐pubertal (Wolf et al., 1965).

The andrological clinical evaluation was performed each 
90  days, when the ultrasound evaluation was performed to 
monitor changes in the testicular parenchyma from weaning 
(7  months) to 22  months of age. Longitudinal–lateral plan 
images were obtained in four evaluations interspersed by 
90 days with a linear probe of 7.5 mHz (Costa‐e‐Silva et al., 
2017). The pixel density was read in a software, and the curve 
was analysed separately. By the results of these evaluations, 
the animals could be classified as early maturing (puberty 
≤14  months), typical maturing (puberty between 14 and 
17 months) or traditional (puberty >17 months). The age at 
puberty was considered as linear, evaluated by the age that 
each animal reaches puberty, measured in months.

2.2 | Genotyping and quality control
A total of 18,746 Nelore animals were genotyped using 
the Clarifide® Nelore 2.0 (Zoetis). The genotype quality 
control (QC) excluded SNPs that were monomorphic, had 
minor allele frequency (MAF) <5%, call rate lower than 
90%, with unknown genomic position, and mapped on sex 
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chromosomes according to the UMD_3.1 bovine genome as-
sembly. Samples with a call rate lower than 90% were also 
excluded. After quality control, genotypes on 17,230 SNPs 
were available for 18,746 young Nelore bulls.

2.3 | Weighted single‐step genome‐wide 
association study (WssGWAS)
Variance components for sexual maturity in Nelore bulls 
were estimated by the average information restricted maxi-
mum likelihood method using the AIREMLF90 software 
(Misztal et al., 2002). Genomic information was not used 
to estimate variance components. The single‐trait model in-
cluded contemporary group as fixed effect (farm and year of 
birth, management group at weaning and yearling), random 
animal genetic effect and the residual effect. In matrix nota-
tion, the model can be described as:

where y is the vector of phenotypic records; b is the vec-
tor of fixed effect of contemporary groups; a is the vector of 
additive direct genetic effects; and X and W are the incidence 
matrices for the effects contained in b and a, respectively; e 
is the residual.

The same animal model was used to estimate the genomic 
breeding values (GEBV) by the single‐step genomic BLUP 
(ssGBLUP) approach (Aguilar et al., 2010), which combines 
pedigree and genomic relationships into a realized relation-
ship matrix (H). Therefore, the difference between the reg-
ular BLUP and ssGBLUP is that the inverse of the pedigree 
relationship matrix (A−1) is replaced by H−1, which is repre-
sented as follows:

where G−1 is the inverse of the genomic relationship ma-
trix and A22

−1 is the inverse pedigree relationship matrix for 
genotyped animals. The G matrix was constructed as de-
scribed by Van Raden (2008):

where Z is a matrix of genotypes centred by twice the cur-
rent allele frequencies of each SNP (p); i is the ith locus; D 
is a diagonal matrix of weights for SNP, which is an identity 
matrix for the regular ssGBLUP. The G was blended with 5% 
of A22 to avoid singularity problems.

After GEBV were estimated by ssGBLUP, they were 
back solved to obtain SNP effects as described by Wang et 
al. (2012):

where âg is GEBV for genotyped animals; � is the ratio of 

SNP to additive genetic variances 
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weight for each SNP was calculated based on SNP effects as 
follows (Wang et al., 2012):

where di is the weight for the i‐th SNP.
All the analyses were performed using the BLUPF90 soft-

ware (Misztal et al., 2016). For the weighted single‐step GWAS 
(WssGWAS; Wang et al., 2012), the steps from the construction 
of G up to the calculation of SNP weights were repeated twice, 
meaning that computed weights were used to update GEBV and 
SNP effects. After the second round, the genome‐wide associ-
ation was verified based on the percentage of additive genetic 
variance explained by 10‐SNP sliding windows.

The percentage of the additive genetic variance explained 
by ith window was calculated as described by Wang et al. 
(2014):

where ai is genetic value of the i‐th region consisting of 
10‐SNP sliding window length physical size, σ2

a
 is the total 

genetic variance, zj is vector of genotype of the j‐th SNP for 
all individuals, ûj is SNP effect of the j‐th SNP within the i‐th 
region, n is the number of SNP in a window. The genomic re-
gions displaying more than 0.5% of the additive genetic vari-
ance for age at puberty in young Nelore bulls were prospected 
for possible QTL related to this trait.

2.4 | Gene annotation and 
enrichment analysis
The Ensembl Biomart tool with the Genes 94 database 
(Haider et al., 2009) was used to identify the gene content of 
genomic regions displaying more than 0.5% of the additive 
genetic variance, selecting a 500  Kb window around each 
significant region (upstream and downstream). The search 
for relevant (p < .05) Gene Ontology (GO) terms and KEGG 
(Kyoto Encyclopedia of Genes and Genomes) pathways was 
performed with Database for Annotation, Visualization and 
Integrated Discovery (DAVID) v. 6.8 tool (Huang, Sherman, 
& Lempicki, 2009a, 2009b) using the UMD3.1 assembly as 
genome reference.

3 |  RESULTS

The sexual maturity analysis revealed 627, 1,200 and 2,408 
young bulls classified as early maturing (puberty between 
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9 and ≥14 months), typical maturing (puberty between 14 
and ≥17 months) and traditional (puberty >17 months), re-
spectively. The estimated heritability for age at puberty in 
Nelore bulls was 0.3457 ± 0.059. The additive genetic di-
rect variance was 4.23, whereas the residual variance was 
8.01.

A total of 26 windows were identified each explained 
more than 0.5% of the additive genetic variance for sexual 
maturity in young Nelore bulls (Figure 1, Table 1), which 
explained a total of 18.95% of additive genetic variance for 
the trait.

A total of 480 protein‐coding genes were identified within 
the genomic regions that explain more than 0.5% of the ad-
ditive genetic variance for age at puberty in Nelore bulls. 
Among then, several genes have been previously identified 
as related to spermatogenesis functions such as ADAM11, 
PARP2, PARP9, NECTIN3, SPA17, PRSS21, TRIP13, 
NDRG2, RNASE4, TEX14, MEIOC, SLX4, RAD51C, BRCA1, 
CSNK2A, CREBBP and TIMP2 gene.

The functional enrichment analysis by DAVID software 
revealed 10 GO biological processes, four GO cellular 
components, seven GO molecular functions and two KEGG 
pathways significantly over‐represented (Table 2). We 
highlighted the following terms related to spermatogene-
sis such as DNA replication (GO:0006260), male meiosis I 
(GO:0007141), double‐strand break repair (GO:0,006,302), 
base excision repair (GO:0006284), cell–cell adhesion 
(GO: 0098609) and focal adhesion (GO:0005925).

4 |  DISCUSSION

The heritability estimated for puberty in Nelore bulls was 
moderate (0.35 ± 0.06), indicating that genetic progress for 
this trait is feasible, and so, it would respond favourably to 
direct selection. Based on the heritability estimated, the pu-
berty in Nelore bulls could be improved based on traditional 
estimated breeding value (EBV) selection. However, geno-
typing costs has decreased dramatically in recent years and 
nowadays it costs almost the same as measuring phenotypes 
related to puberty in bulls, which requests ultrasound evalu-
ation and semen analysis. In addition, genotyping provides 
accurate and reliable results contributing to improve our 
understanding of the complexity of biological mechanisms 
related to puberty in young bulls and could help to predict 
sexual precocity in Nelore bulls with greater accuracy at 
younger age, which would speed up the breeding programme 
for this breed. Eventually, the genes identified as related to 
puberty in bulls could be used as molecular markers or to 
develop an SNP genotyping array for reproductive traits.

Regarding to genes identified by wssGWAS, we high-
lighted some genes that could be related to early puberty in 
Nelore bulls, according their functions. The function of those 
genes in other mammals such as rodents and humans was dis-
cussed only if their functions in cattle were not previously 
described. However, we carefully verified whether these 
genes are orthologous among mammals, which are generally 
assumed to retain a similar function to that of the ancestral 

F I G U R E  1  Proportion of additive genetic variance explained by windows of 10 adjacent SNP for age at puberty in young Nelore bulls
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gene that they evolved from and to share other key properties 
(Gabaldón & Koonin, 2013).

Seminal plasma is a complex secretion of sugars, lipids, 
enzymes, prostaglandins, proteins, inorganic ions, organic 
salts and several other components produced by the testes, 
epididymis and accessory sex glands of the male which influ-
ences several biological processes related to sperm matura-
tion, sperm membrane stabilization and capacitation beyond 
interact with the oviduct and oocyte (Druart et al., 2013).

Stable intercellular bridges are a distinct feature of sper-
matogenesis in mammalian germ cells which have been 
recognized as the unique means of intercellular commu-
nication and their loss causes spermatogenesis disruption 
(Greenbaum, Iwamori, Buchold, & Matzuk, 2011). The 
TEX14 (testis‐expressed gene 14), a testis‐expressed gene and 
germ cell‐specific component, encodes a protein necessary 
for intercellular bridges in germ cells converting midbodies 

into stable intercellular bridges, which are crucial for suc-
cessful spermatogenesis. The loss of germ cell intercellular 
bridges causes sterility through spermatogenesis disruption 
(Greenbaum, Iwamori, Agno, & Matzuk, 2009; Kim et al., 
2015).

The PRSS21 (serine protease 21) gene, as well as TEX14, 
also participates in the male gamete generation (GO:0048232) 
biological process, which encodes a cell‐surface anchored 
serine protease known as testisin, which is abundantly ex-
pressed by premeiotic testicular germ cells and sperm 
(Scarman et al., 2001). Deficient PRSS21‐mouse displays 
sperm with several defects that occur during epididymal tran-
sit, such as heterogeneity in sperm form and angulated fla-
gella, reduced numbers of motile sperm, and abnormal sperm 
volume, suggesting that testisin is a proteolytic factor that 
is responsible for epididymal sperm cell maturation, sper-
matozoa‐fertilizing ability (Netzel‐Arnett et al., 2009) and 
contributes to the zona pellucida‐binding complex in stallion 
spermatozoa, which could be involved in the proteolytic cas-
cade that arranges the sperm surface for interaction with the 
oocyte (Swegen et al., 2019).

The NDRG2 (NDRG family member 2) gene regulates tes-
ticular development and spermatogenesis in rats, which is in-
volved in cell differentiation, physiological and pathological 
apoptosis of germ cells (Hou et al., 2009). The SPA17 (sperm 
autoantigenic protein 17) gene encodes a conserved highly 
antigenic protein found in acrosome and fibrous sheath of the 
sperm flagellum, which has been implicated in cell–cell ad-
hesion functions, sperm maturation, capacitation, acrosome 
reaction and binding of sperm to the zona pellucida of the 
oocyte (Chiriva‐Internati et al., 2009; Grizzi et al., 2003).

The ADAM11 gene encodes a member of a disintegrin 
and metalloprotease (ADAM) protein family, which play im-
portant roles in several biological processes including sper-
matogenesis and sperm functions affecting the maturation of 
sperm and influencing their adhesion and migration in the 
uterus (Edwards, Handsley, & Pennington, 2008).

Spermiogenesis includes several processes such as tran-
scriptional silencing, chromatin condensation and extensive 
morphological changes as spermatids transform into ma-
ture sperm. The RNASE4 (ribonuclease A family member 4) 
gene encodes a protein that has been found in bull seminal 
vesicle (Westfalewicz et al., 2017) and it has been related 
to fluid sperm maturation in cattle (Selvaraju et al., 2018). 
The TIMP metallopeptidase inhibitor 2 (TIMP2) is a member 
of the TIMP gene family that encodes inhibitors of the ma-
trix metalloproteinases and has been associated with semen 
quality and fertility in bulls (Kasimanickam et al., 2012; 
McCauley, Zhang, Bellin, & Ax, 2001).

The PARP2, PARP9 and PARP14 genes are members of 
poly (ADP‐ribose) polymerase (PARP) family which plays 
a crucial role in maintaining the genomic integrity of sev-
eral cell types acting in DNA repair, maintenance of genomic 

T A B L E  1  Genomic windows of 10 adjacent SNPs that explain 
more than 0.5% of the additive genetic variance (Var) for age at 
puberty in young Nelore bulls

Chromosome
Start posi-
tion (bp) End position (bp) Var

25 1,990,059 2,773,521 0.51247

29 28,192,104 29,327,349 0.52499

12 31,933,210 33,215,852 0.53099

2 2,814,353 4,339,368 0.53283

9 12,252,672 12,946,867 0.53618

4 11,1863,574 11,262,6,112 0.54631

1 55,832,662 57,660,748 0.55065

1 85,067,382 86,351,590 0.55540

5 32,481,519 33,430,648 0.56312

19 10,085,159 10,609,583 0.59781

10 22,278,002 26,325,867 0.62519

20 70,415,256 71,296,022 0.62949

19 53,831,725 54,815,158 0.63426

1 77,442,921 78,724,790 0.65387

1 66,550,779 68,066,718 0.66807

11 66,118,270 66,789,317 0.68508

4 30,109,820 31,403,232 0.70410

20 1,576,537 1,961,868 0.71243

9 14,838,816 15,312,685 0.73410

18 26,282,010 27,121,621 0.73729

15 40,459,840 41,947,856 0.78142

26 16,753,151 17,577,730 0.87407

2 65,069,037 66,524,648 0.95542

5 7,201,534 7,862,085 0.99193

3 95,662,104 96,724,963 1.41717

19 44,261,882 45,332,964 1.70062
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T A B L E  2  KEGG pathways and Gene Ontology terms revealed by DAVID analyses

Term N P‐value Genes

Biological process

GO:0090501–RNA phosphodiester 
bond hydrolysis

4 1.62E−04 ANG, RNASE4, ANG2, RNASE6

GO:0098609–cell–cell adhesion 7 0.004283 LIMS2, CCDC80, PKD1, ESAM, NECTIN3, CSTA, VMP1

GO:0000122–negative regulation of 
transcription from RNA polymerase 
II promoter

21 0.006085 HCLS1, CBX4, TP63, CBX2, CNOT1, PDX1, CBX8, TAGLN3, ZNF205, 
ZNF174, TRIM37, HDAC5, SALL2, VDR, CHD8, HEXIM2, SAP130, 
HEXIM1, E4F1, ZNF219, HDAC7

GO:0006260–DNA replication 6 0.016362 SLX4, GINS3, TBRG1, E4F1, POLQ, BRCA1

GO:0006915–apoptotic process 12 0.016430 CSNK2A2, CLPTM1L, DNASE1, EI24, DAD1, BIRC5, RPS6KB1, 
FAM162A, TRAF7, CUL1, WDR92, C1D

GO:0006536–glutamate metabolic 
process

3 0.021010 GOT2, ALDH18A1, NAGS

GO:0006302–double‐strand break 
repair

5 0.025903 PARP9, APLF, DTX3L, MEIOC, TRIP13

GO:0090502–RNA phosphodiester 
bond hydrolysis, endonucleolytic

4 0.034230 RNASE1, ENDOU, BRB

GO:0006284–base excision repair 4 0.040870 USP47, POLQ, PARP2, APEX1

GO:0007141–male meiosis I 3 0.042553 RAD51C, MEIOC, TRIP13

Cellular component

GO:0005737–cytoplasm 100 0.021410 FLYWCH1, DBF4B, PRR11, PKMYT1, RPS6KB1, PDLIM1, PNP, 
KLHL7, GTF2E1, NLRC3, CDKN2C, DDX25, MLST8, CASKIN1, 
ZNF641, SOCS3, RBFOX3, EFTUD2, DTX3L, HCFC1R1, SPA17, 
ASB8, HEPACAM, PARP14, CDCA7L, CSTA, TPPP2, HSPBAP1, PPY, 
FBXO40, TPRG1, ASB16, TK1, SLX4, HEXIM2, HEXIM1, NDRG4, 
DRC7, SKA2, NDRG2, BLNK, DHX8, EEF1A1, PRSS54, OSGEP, LPP, 
CREBBP, SPDL1, RNPS1, KCTD5, BRCA1, FXR1, HDAC5, NMT1, 
RNF6, TUBD1, POMP, DHX40, PARP2, HDAC7, GFAP, EZH2, 
KCNIP1, TMEM235, SENP6, AFMID, CD96, CCDC184, ETAA1, TERT, 
MEIOC, ARHGAP27, TPPP, C1QL1, ARL4D, MAP3K14, PARVA, C1D, 
HYLS1, CYTH1, ENDOU, COL2A1, ZNF174, MEFV, PKD1, APEX1, 
ZNF263, PLEK, HCLS1, BIRC5, FZD2, PKNOX2, TEX14, MEOX1, 
ZBED5, SP4, SETD6, USP47, TEP1, FEZ1

GO:0035102–PRC1 complex 3 0.027172 CBX4, CBX2, CBX8

GO:0005654–nucleoplasm 46 0.040641 FLYWCH1, IQCB1, CLUAP1, SEPT4, RAD51C, DBF4B, APLF, SOX2, 
TP63, CBX2, CHEK1, RPS6KB1, CBX8, RPS2, ZNF174, SENP6, 
KLHL7, VDR, SLX4, HEXIM2, HEXIM1, E4F1, NDRG2, APEX1, DHX8, 
ZNF263, ZNF641, GINS3, DTX3L, ARHGAP27, RNPS1, TOX4, TRAP1, 
RNF6, DUSP3, PARP9, ZBED5, CCDC113, SP4, CFAP20, TUBD1, 
THOC6, POMP, PARP2, METTL17, KPNA1

GO:0005925–focal adhesion 15 0.043237 LIMS2, FLT1, LPP, PDLIM1, FZD2, RPS2, MMP14, SLC9A3R2, 
ATP6V0C, ACTR3, SENP1, RPS29, PHLDB2, PARVA, ITGA2B

Molecular function

GO:0004519–endonuclease activity 8 2.09E−06 RNASE10, RNASE1, RNASE11, ANG, RNASE4, ANG2, RNASE6, 
DNASE1L2

GO:0004540–ribonuclease activity 6 4.96E−05 RNASE10, RNASE11, ANG, RNASE4, ANG2, RNASE6

GO:0003676–nucleic acid binding 25 0.001591 ZNF398, ZNF263, ZNF641, GTF3A, RNASE1, DBF4B, RNASE4, ANG2, 
RNASE6, ZNF75A, POLR2D, ZNF518A, ZNF205, ZNF174, RNASE10, 
TNRC6C, RNASE11, ANG, DDX25, SP4, ZNF597, ZNF319, RNASE13, 
BRB

GO:0004522–ribonuclease A activity 3 0.001901 RNASE1, BRB

(Continues)
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stability, transcriptional regulation, apoptosis and necro-
sis (Ame, Spenlehauer, & Murcia, 2004; Celik‐Ozenci & 
Tasatargil, 2013; Said & Khosravi, 2012). Maintaining the 
integrity of sperm DNA is vital to male fertility and the 
PARPs have several roles during spermatogenesis, sperm 
maturation and even in ejaculated sperm through protection 
against chemically induced damage (Agarwal et al., 2009; 
Celik‐Ozenci & Tasatargil, 2013).

The functional enrichment analysis by DAVID software 
revealed 10 GO biological processes, four GO cellular com-
ponents, seven GO molecular functions and two KEGG 
pathways over‐represented (p  <  .05). Spermatogenesis is a 
complex process related to the development of spermatozoa 
in the seminiferous tubules of the testis and epididymis, that 
involves cell proliferation and differentiation during male 
germ cell development including several processes such as 
mitosis, meiosis, DNA repair and spermiogenesis (Shaha et 
al., 2010; Griswold 2015; Gunes, Al‐Sadaan, & Agarwal, 
2015). We identify several over‐represented (p  <  .05) GO 
terms related to these processes, such as DNA replica-
tion (GO:0006260), male meiosis I (GO:0007141), dou-
ble‐strand break repair (GO:0006302), base excision repair 
(GO:0006284), apoptotic process (GO:0006915), cell–cell 
adhesion (GO: 0098609) and focal adhesion (GO:0005925).

Spermatogenesis is a highly ordered differentiation 
process that includes meiosis I and II successive cellular 
divisions. Male meiosis I (GO:0007141) biological pro-
cess encompasses the steps by which a cell progresses 
through the first meiotic division in the male germ cell. 
The MEIOC, RAD51C and TRIP13 genes were identi-
fied as related to male meiosis I biological process. The 
MEIOC (meiosis specific with coiled‐coil domain) gene, 
which has restricted expression towards testis in human, 
encodes an essential protein to extended meiotic prophase 
required to complete chromosome dynamics and meiotic 

recombination processes besides to avoid degradation of 
transcripts of genes critical for meiotic prophase (Abby 
et al., 2016; Soh et al., 2017). The RAD51C gene encodes 
a protein that plays important roles in the repair of DNA 
and homologous recombination in germ line cells, which 
is required for gene reassortment and proper chromosome 
segregation at meiosis (Liu, Tarsounas, O'Regan, & West, 
2007). RAD51C deficiency in mice results in infertility be-
cause the spermatocytes undergo a developmental arrest 
during the meiotic prophase I (Kuznetsov et al., 2007). The 
TRIP13 (thyroid hormone receptor interactor 13) encodes 
a conserved AAA  +  ATPase that interacts with thyroid 
hormone receptors and is required for normal execution 
of multiple aspects of chromosome structure development, 
meiotic recombination, formation of higher order chromo-
some structures and repair (Marcet‐Ortega et al., 2017; 
Pacheco et al., 2015; Roig et al., 2010). Mice spermato-
cytes with TRIP13 deficiency trigger a recombination‐de-
pendent response that arrests spermatocytes in pachynema 
without incorporation of the testis‐specific histone H1t into 
their chromatin, resulting in cell apoptosis in response to 
the arrest or defect in sex body formation (Marcet‐Ortega 
et al., 2017).

Several genes were identified as related to DNA replica-
tion (GO:0006260) biological process and, among them, we 
highlighted the SLX4 and BRCA1 genes. The SLX4 (SLX4 
structure‐specific endonuclease subunit) gene, also known as 
BTBD12, assists in the resolution of DNA secondary struc-
tures arises during the DNA repair and recombination pro-
cesses. The SLX4 works as a scaffold for several DNA repair 
activities and has been identified in mouse premeiotic sper-
matogonia and meiotic spermatocytes with roles in premei-
otic primordial germ cell proliferation and meiotic crossover 
formation maintain genome stability throughout gametogen-
esis (Holloway et al., 2011). During embryogenesis, loss of 

Term N P‐value Genes

GO:0004861–cyclin‐dependent pro-
tein serine/threonine kinase inhibitor 
activity

3 0.025351 HEXIM2, CDKN2C, HEXIM1

GO:0044212–transcription regulatory 
region DNA binding

8 0.028551 SALL2, SOX2, ZNF200, CBX4, TP63, ZNF219, BRCA1, ZNF174

GO:0046872–metal ion binding 40 0.034709 GTF3A, APLF, PLEKHM1, YPEL2, SLC6A3, ENDOU, ZNF200, 
DMRTA2, COL2A1, ZNF75A, TIMP2, ZNF518A, ZNF205, ZNF174, 
GTF2E1, DNTT, MCCC1, ZNF597, E4F1, APEX1, NTHL1, TERT, 
ZNF398, ZNF263, ZNF641, OSGEP, GTPBP8, ANG2, PFKM, HDAC5, 
AMDHD2, ZSCAN10, PPM1E, ZBED5, SP4, ZNF213, ZNF319, ZNF219, 
GPATCH8, HDAC7

KEGG pathway

bta00240:Pyrimidine metabolism 6 0.046193 POLR1D, POLR2D, ENTPD1, PNP, CANT1, TK1

bta04520:Adherens junction 5 0.046742 CSNK2A2, WASF3, SORBS1, CREBBP, NECTIN3

T A B L E  2  (Continued)
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SLX4 results in impaired primordial germ cell proliferation 
and increased apoptosis, which decreases the spermatogonial 
pool in the early postnatal testis, that is the primordial germ 
cell in developing testis is depended of SLX4 (Holloway et 
al., 2011).

The BRCA1 gene encodes a nuclear phosphoprotein that 
contains multiple functional domains to interact with sev-
eral molecules (Deng & Brodie, 2000). Although the major 
function of BRCA1 is to maintain genome integrity, this gene 
plays important roles in several biological processes and path-
ways including spermatogenesis, where BRCA1 is required 
for chromatin silencing, crossing‐over of homologous chro-
mosomes and DNA‐damage repair to maintain the genomic 
stability (Turner et al., 2004; Xu et al., 2003). Cressman et 
al. (1999), in a study with BRCA1‐deficient mice, identified 
infertility in males due to meiotic failure than occurs during 
prophase I of meiosis resulting in spermatogonia apparently 
normal but absence of spermatids and spermatozoa.

DNA repair mechanisms protect the genomic integrity 
and stability of germline cells that includes DNA mismatch 
repair, nucleotide excision repair, base excision repair, dou-
ble‐strand break repair and postreplication repair in the male 
germ line cells (Gunes et al., 2015). In this study, the double‐
strand break repair (GO:0006302) and base excision repair 
(GO:0006284) biological processes were over‐represented. 
The DNA double‐strand break repair involves the repair 
by homologous and non‐homologous mechanisms to ob-
tain a continuous DNA helix, while the base excision repair 
(GO:000628) is a highly coordinated mechanism responsible 
for detecting and removal altered bases by DNA glycosylase 
enzyme.

The cell–cell adhesion (GO: 0098609) biological process 
is defined as the attachment of a cell to another cell via ad-
hesion molecules. Byrne, Leahy, McCulloch, Colgrave, and 
Holland (2012) described the set of proteins present at the 
mature bull sperm plasma membrane that are related to cell 
adhesion, which are vital to for ensuring spermatogenesis 
progression, including maturation, capacitation, sperm–egg 
interaction and fertilization.

In mammalian seminiferous epithelium of the adult testis 
and the epididymis, cell–matrix and cell–cell interactions are 
crucial to cellular events, such as maintenance of cell/tissue 
homeostasis, spermatogenesis in the testis and sperm mat-
uration in the epididymis (Cyr, 2011; Dubé & Cyr, 2013). 
Focal adhesion (GO:0005925) is related to a small region 
on the surface of a cell known as cell–matrix adhesions that 
anchors the cell to the extracellular matrix and that forms a 
point of termination of actin filaments that play important 
roles in essential biological processes such as regulation of 
gene expression, cell motility, proliferation, differentiation 
and survival. During spermatogenesis, focal adhesion helps 
to maintain the dynamic interactions between Sertoli cells 
and developing spermatids, facilitating the orientation and 

migration of spermatid across the seminiferous epithelium 
(Siu & Cheng, 2008; Yan et al., 2007).

The adherens junction (bta04520) KEGG pathway is re-
lated to the most common type of intercellular adhesions, im-
portant for maintaining tissue architecture and cell polarity, 
limiting cell movement and proliferation. We highlighted the 
CSNK2A, CREBBP and NECTIN3 genes related to adherens 
junction pathway. The CSNK2A2 (casein kinase 2 alpha 2) 
gene encodes a subunit of the protein kinase enzyme, a ser-
ine/threonine protein kinase that is involved in several cellular 
processes, including cell growth of germ cells and apoptosis. 
The CSNK2A2 is involved in the biogenesis of the acrosome 
and has been found preferentially expressed in later stages of 
spermatogenesis (Xu et al., 1999). Disruption of CSNK2A2 
gene leads to male infertility due to globozoospermia and oli-
gospermia (Xu et al., 1999).

The CREBBP (CREB‐binding protein) gene is related 
to transcriptional coactivation of different transcription fac-
tors and has been associated with azoospermia (Sabetian & 
Shamsir, 2016). Partial disruption of CREBBP gene in mice 
interferes in germ cell development at the spermatocyte stage 
(Hummler et al., 1994) because CREB‐binding protein is re-
quired to produce a critical Sertoli cell‐derived factor for germ 
cell survival (Scobey et al., 2001). The NECTIN3 (nectin cell 
adhesion molecule 3) encodes a member of nectin family that 
works as adhesion molecules at adherens junctions and is es-
sential to the development and positioning of elongated sperma-
tids within the seminiferous tubules (Nishimura & L'Hernault, 
2017). NECTIN3 plays a critical role in spermatid development 
because they are crucial for the formation and maintenance of 
Sertoli–spermatid junctions (Inagaki et al., 2006).

5 |  CONCLUSION

Age at puberty in young Nelore bulls has shown to have a 
moderate heritability indicating that this trait would respond 
favourably to selection. Regarding to the genetic architecture, 
a total of 26 windows were identified by WssGWAS that ex-
plained a total of 18.95% of the additive genetic variance; 
therefore, this trait follows a polygenic model of inheritance 
with several genetic variants of small effects. Additionally, 
the functional enrichment analysis revealed significant GO 
terms and KEGG pathways which may play relevant roles 
and help to understand the molecular mechanisms controlling 
age at puberty in Nelore bulls.
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